

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

FT-IR Study of the Interaction Between 1,3-Dimethyluracil and the Lithium Ion

J. Parmentier^a; Th. Zeegers-Huyskens^a

^a Department of Chemistry, University of Leuven Celestijnenlaan, Heverlee, Belgium

To cite this Article Parmentier, J. and Zeegers-Huyskens, Th.(1988) 'FT-IR Study of the Interaction Between 1,3-Dimethyluracil and the Lithium Ion', *Spectroscopy Letters*, 21: 6, 385 — 396

To link to this Article: DOI: 10.1080/00387018808062720

URL: <http://dx.doi.org/10.1080/00387018808062720>

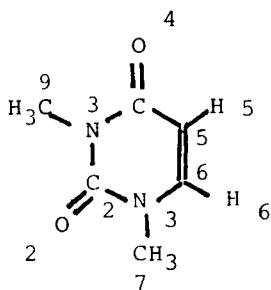
PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

FT-IR STUDY OF THE INTERACTION BETWEEN 1,3-DIMETHYLURACIL AND THE LITHIUM ION


Key words. FT-IR spectra, dimethyluracil, Li^+ complex.

J. Parmentier and Th. Zeegers-Huyskens

Department of Chemistry, University of Leuven
Celestijnendaan 200F, 3030 Heverlee, Belgium

INTRODUCTION

Protonation and complexation of nucleic acid bases with metal ions have a profound influence on their structure and reactivity¹⁻³. Although the interaction between carbonyl bases and the Li^+ ion has been studied by vibrational spectroscopy⁴⁻⁸ and ab initio calculations⁸⁻¹⁵, no experimental results are available for the complexation between this ion and carbonyl bases derived from nucleic acids. In this work, the interaction between 1,3-dimethyluracil (DMU)

and LiI is studied in acetonitrile as a solvent. The FT-IR spectrum of the complex in the solid state is also investigated; as shown by theoretical calculations¹⁵, complex formation of thymine with Li⁺ leads to structural changes in the base moiety and as a consequence, marked changes in the vibrational spectrum are to be expected.

EXPERIMENTAL

The spectra have been recorded on the FT-IR Bruker IFS-88 spectrophotometer with a resolution of 2 cm⁻¹ (32 scans).

The complex between DMU and LiI was studied in acetonitrile as a solvent; the solutions were prepared under dry nitrogen atmosphere. The complex in the solid state has been prepared from an equimolecular solution of the base and the salt and the spectrum of the solid adduct has been recorded in KBr disc.

LiI is from Janssen Chimica. Acetonitrile from Merck has been distilled over P₂O₅. DMU from Sigma was used without further purification.

RESULTS AND DISCUSSION

a. Interaction between DMU and LiI in Acetonitrile

LiI dissolved in acetonitrile is completely dissociated into ions; in this solvent, Li⁺ has a coordination number of four in the first solvation shell¹⁷. The "ion-cage" vibrations are observed at about 405 cm⁻¹¹⁷⁻¹⁸. Owing to overlapping with solvent absorptions, only a few bands of DMU could be studied in solution. In the $\nu_{C=O}$ region, two bands are observed at 1709 and 1668 cm⁻¹; in a previous work¹⁹, these two bands have been assigned to vibrational modes having predominantly $\nu_{C=O_2}$ and $\nu_{C=O_4}$ character, contrarily to

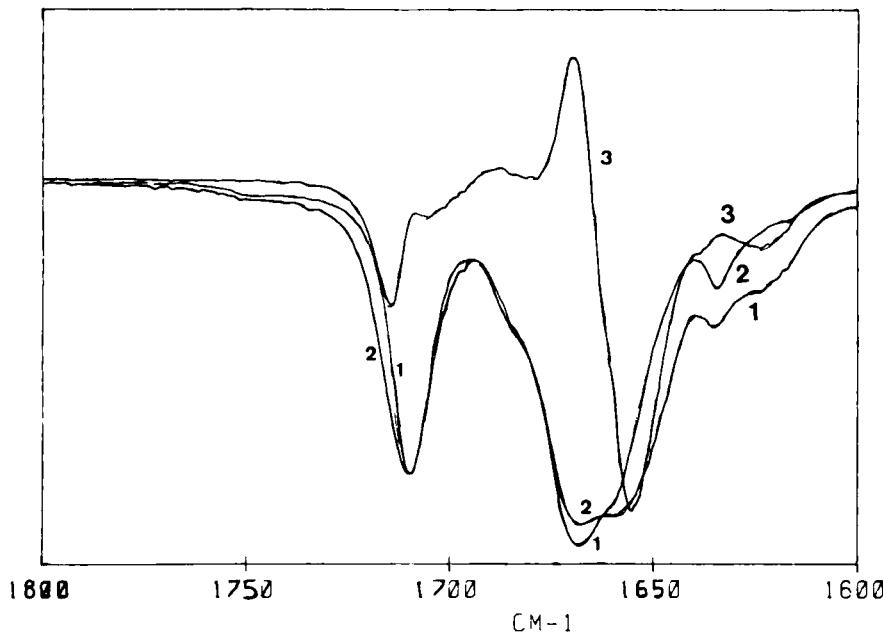


FIGURE 1 FT-IR spectrum in the $\nu_{C=O}$ region of
 1. DMU ($c = 0.144$ M)
 2. DMU ($c = 0.144$ M) + LiI ($c = 0.138$ M)
 solvent = CH_3CN
 3. Difference spectrum between 2 and 1.

results from ab initio calculations which give an inverse assignment²⁰.

As shown in Fig. 1, in the presence of LiI, a broadening to the high frequency side of the $\nu_{C=O_2}$ band, a decrease of the intensity of the $\nu_{C=O_4}$ band² and a new absorption to the low frequency side of this band are observed. The difference spectrum shows new bands at 1714 cm^{-1} ($\Delta\nu = +5\text{ cm}^{-1}$) and 1655 cm^{-1} ($\Delta\nu = -13\text{ cm}^{-1}$). This spectral behaviour strongly suggests that the Li^+ ion is bonded to the O_4 atom, the shift of the $\nu_{C=O_2}$

TABLE 1

F_B , F_A , c_{AB} and K Values for the Interaction between
DMU and LiI in Acetonitrile ($T^\circ = 298$ K)

F_B (M)	F_A (M)	c_{AB} (M)	K (M $^{-1}$)
0.144	0.036	0.014	4.9
0.144	0.138	0.044	4.7
0.161	0.041	0.018	5.5
0.161	0.055	0.025	6.1
$\bar{K} = 5.3 \pm 0.6$ M $^{-1}$			

band to higher wavenumbers indicating a decreasing delocalization within this bond. This agrees with the theoretical predictions of Del Bene¹⁶ who has shown that the complex of uracil formed with Li⁺ associated at O₄ has a stabilization energy of -55.4 kcal.mol $^{-1}$ and is slightly preferred to the complex formed at O₂ which has a stabilization energy of -53.9 kcal.mol $^{-1}$. It must be pointed out however that when LiI is in great excess with respect to DMU, a second band to the low frequency side of the $\nu_{C=O_2}$ band (1700 cm $^{-1}$) is observed and this can be assigned to complex formation on the O₂ atom. Small frequency shifts of the bands at 1150, 809 and 685 cm $^{-1}$ are also observed.

An attempt was made to calculate the equilibrium constant. For a given formal concentration of base (F_B), the concentration of free base (c_B) can be computed from the absorbance of the $\nu_{C=O_4}$ band.

$$K = \frac{F_B - c_B}{c_B - c_A} = \frac{c_{AB}}{c_B(F_A - c_{AB})}$$

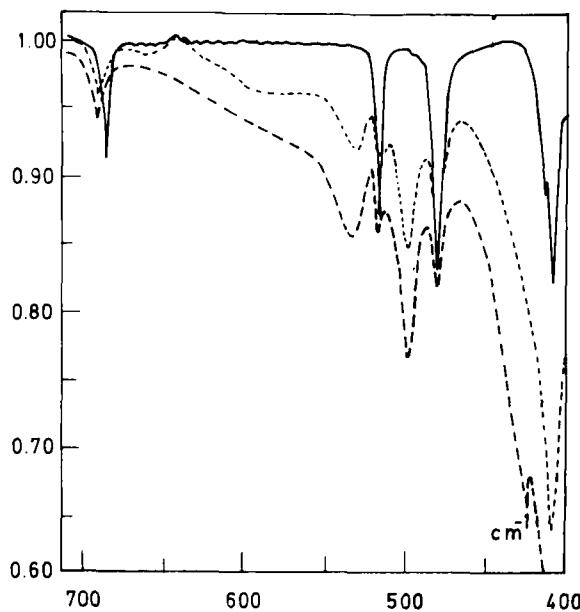


FIGURE 2 FT-IR spectrum ($700-400\text{ cm}^{-1}$) of
 — DMU ($c = 0.144\text{ M}$)
 ··· DMU ($c = 0.144\text{ M}$) and LiI ($c = 0.138\text{ M}$)
 --- DMU ($c = 0.144\text{ M}$) and LiI ($c = 0.295\text{ M}$)

c_{AB} and F_A being the complex and the formal concentration of LiI.

These concentrations and the equilibrium constant (K) are listed in Table 1.

As a matter of fact, the experimental Li^+ affinities of oxygen bases in the gas phase are between 40 and 60 kcal.mol^{-1} ²¹ and as a consequence, a much higher K value in the gas phase can be predicted. In solution, the K value is associated with the equilibrium

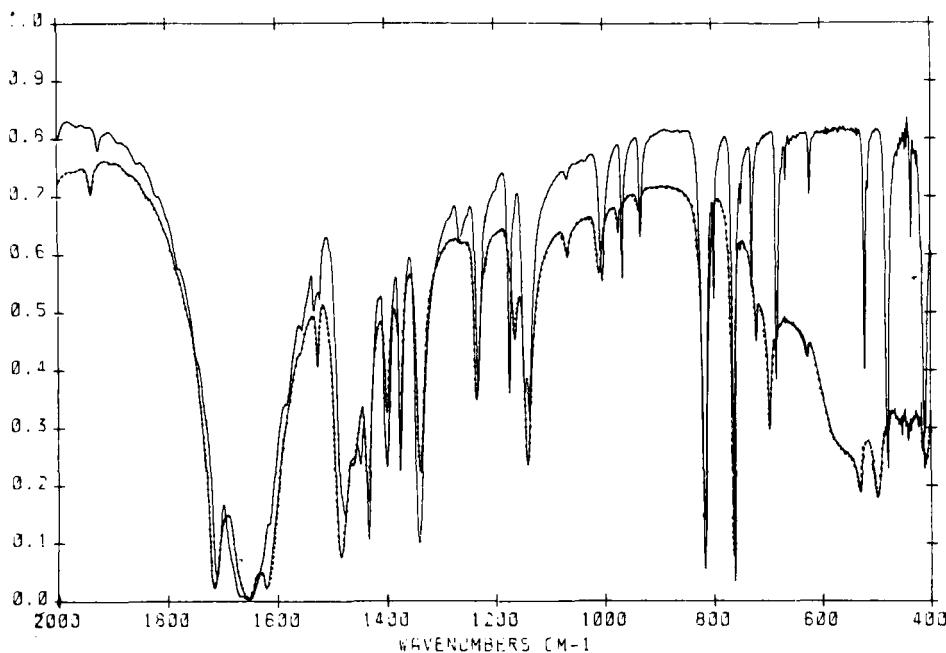


FIGURE 3 FT-IR spectrum of DMU (—) and the DMU.LiI adduct (---) in the solid state

As shown in Fig. 2, a broad band is observed between 650 and 400 cm^{-1} ($\nu_{\text{max}} \sim 500\text{ cm}^{-1}$); this absorption is assigned to the $\nu_{\text{Li}^+-\text{O}}$ vibration. The $\nu_{\text{Li}^+-\text{C}\equiv\text{N}}$ vibration is observed at 405 cm^{-1} in agreement with literature data¹⁷⁻¹⁸.

b. Complex between DMU and LiI in the Solid State

The spectrum of the complex in the solid state is reproduced in Fig. 3 and the infrared data for free DMU and the complex are listed in Table 2.

As shown by these results, the frequency shift of the $\nu_{\text{C}=\text{O}_4}$ vibration (-45 cm^{-1}) is much higher in

TABLE 2

Infrared Data for DMU free and complexed with LiI
(cm^{-1}) (KBR disc).

Free DMU	DMU.LiI	Assignment ^b
1710	1715	$\nu_{\text{C}=\text{O}_2}$
1665	1620	$\nu_{\text{C}=\text{O}_4}$
1652	1653	$\nu_{\text{C}=\text{C}}$
1534	1526	$2\gamma_{\text{C}=\text{O}}$
1523		
1478	1485	$\delta^{\text{as}}\text{CH}_3$
1447	~1465 ^a	$\nu_{\text{C}_2\text{N}_3}$ $\nu_{\text{N}_1\text{C}_2}$
1434	1434	$\delta^{\text{as}}\text{CH}_3$
1400	1398	δCH_3
1375	1375	$\delta\text{C}_5\text{H}$
1341	1337	$\nu_{\text{N}_3\text{C}_4}$
1263	- ^a	$\nu_{\text{C}_2\text{N}_3}$
1231	1233	$\nu_{\text{C}_1\text{C}_7}$ $\delta\text{C}_6\text{H}$
1174	1164	r_{CH_3}
1145	1140	r_{CH_3}
1137		
1003	1010	$\nu_{\text{C}_4\text{C}_5}$
965	972 ^a	?
932	932 ^a	$\nu_{\text{N}_3\text{C}_9}$ γ_{CH}
816	816	see descrip-
798		tion in the text
761	.	
728	719	ν_{ring} δ_{ring}
684	696	$\nu_{\text{C}_3\text{C}_4}$ ν_{ring} (?)
623	626	$\delta_{\text{C}_4=\text{O}}$
522	531	ring def.
479	500	ring def.

(a) strong intensity decrease; (b) ν = stretching, δ = i.p. deformation, γ = o.o.p. deformation, r = rocking Assignment from ref. 19.

the solid complex than in acetonitrile solution and this result agrees with the previous discussion. Similar results have been obtained by Popov et al.⁴ for 2-pyrrolidones complexed with LiClO_4 . In dioxane solution the $\Delta\nu_{\text{C=O}}$ value is -21 cm^{-1} while in the solid state, the $\nu_{\text{C=O}}$ band shifts to lower values by $40-45 \text{ cm}^{-1}$.

The in-plane deformation and the rocking vibrations of the CH_3 group are somewhat perturbed in frequency and intensity. The same remark also holds for vibrations involving an in-plane and out-of-plane deformation of the CH bond. The vibrations associated with $\nu_{\text{C-C}}$ or $\nu_{\text{C-N}}$ stretching modes undergo frequency shifts and intensity variations, this is the case for the bands observed at 1447 cm^{-1} ($\Delta\nu = -18 \text{ cm}^{-1}$), at 1341 cm^{-1} ($\Delta\nu = -4 \text{ cm}^{-1}$), at 1003 cm^{-1} ($\Delta\nu = +7 \text{ cm}^{-1}$) and at 684 cm^{-1} ($\Delta\nu = +12 \text{ cm}^{-1}$). These vibrations have been assigned to $\nu_{\text{C}_2\text{N}_3}$, $\nu_{\text{N}_1\text{C}_2}$, $\nu_{\text{N}_3\text{C}_4}$, $\nu_{\text{C}_2\text{N}_3}$ and $\nu_{\text{C}_3\text{C}_4}$ vibrations but they involve probably a ring stretching mode of the "whole" ring. These perturbations can be explained by small variations of the C_2N_3 , N_1C_2 , N_3C_4 , C_2N_3 and C_3C_4 distances by complex formation with Li^+ . The calculations of Del Bene¹⁶ have shown that the C_2N_3 distance increases by 0.025 \AA , the C_4N_3 distance decreases by 0.010 \AA , the C_4C_5 distance decreases by 0.043 \AA and that the C_5C_6 distance increases by 0.025 \AA by complex formation of uracil with Li^+ .

Further the bands at 522 and 479 cm^{-1} probably originating from out-of-plane deformations, are shifted by about $+20 \text{ cm}^{-1}$.

There is some doubt on the assignment of the vibrational modes between 816 and 761 cm^{-1} . In a low temperature Ar matrix, the two bands observed at 803 and 763 cm^{-1} in DMU have been assigned to $\gamma_{\text{C=O}}$ vibrations²⁰. Further, the bands observed at 832 and 755 cm^{-1} in uracil isolated in Ar have been assigned to the $\gamma_{\text{C=O}_4}$ and $\gamma_{\text{C=O}_2}$

TABLE 3
Experimental $\nu_{C=O}$ Values and Calculated $r_{C=O}$ Values

	$\nu_{C=O_2}$ cm^{-1}	$\nu_{C=O_4}$	$r_{C=O_2}$ \AA	$r_{C=O_4}$
Uracil	1 710	1 670	1.219 ^a	1.221 ^a
Uracil.Li ⁺	1 716 ^b	1 620 ^b	1.210 ^c	1.278 ^c
Uracil.H ⁺	1 704 ^d	1 523 ^d	1.207 ^e	1.367 ^e

(a) ref. 16 ; (b) this work; (c) ref. 16 ; (d) ref. 25 ;
(e) ref. 24 .

vibrations coupled with γ_{CH} modes²². In the DMU.LiI complex, the bands observed at 816 and 761 cm^{-1} remain practically unchanged, the first band shifting slightly to lower frequencies and the second one shifting slightly to higher frequencies. This behaviour strongly suggests that the bands at 816 and 716 cm^{-1} originate from ring vibrations probably coupled with γ_{CH} vibrations. This attribution is strengthened by the high intensity of the two absorptions. The band at 798 cm^{-1} disappears in the complex and probably overlaps with the 816 cm^{-1} absorption while the 684 cm^{-1} band shifts to 696 cm^{-1} . It seems therefore likely that these two absorptions contain some contribution of the $\gamma_{C=O_4}$ mode. This agrees with the recent interpretation of the vibrational spectra of uracil from scaled ab initio quantum mechanical force fields²³ which predict the $\gamma_{C=O}$ mode at 804 cm^{-1} and the coupled $\gamma_{C_5H} + \gamma_{C_4=O}$ mode at 718 cm^{-1} .

Fig. 3 also shows the broad absorption ($\tilde{\nu}_{\text{max}} \approx 500 \text{ cm}^{-1}$) assigned to the ν_{Li^+-O} vibration; this absorption is characterized by a transmission window which originates from the 522 cm^{-1} level.

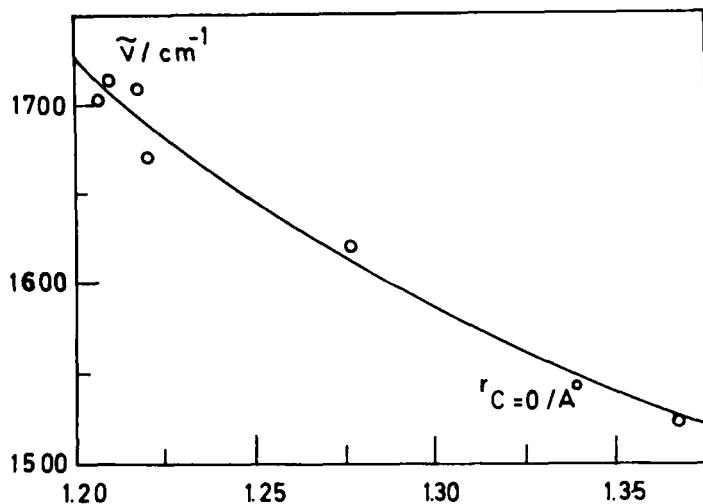


FIGURE 4 $\tilde{v}_{C=O} (\text{cm}^{-1})$ as a function of $r_{C=O} (\text{\AA})$

At last, Table 3 compares the values of the frequencies of the $\nu_{C=O_2}$ and $\nu_{C=O_4}$ vibrations and the $r_{C=O_2}$ and $r_{C=O_4}$ distances for free uracil and its complex with Li^+ and H^+ .

The distances have been computed by ab initio calculations^{16,24} for uracil and the frequencies have been approximately determined for DMU and its complex with Li^+ or H^+ in the solid state²⁵. There is a small difference between the experimental $r_{C=O_2}$ and $r_{C=O_4}$ values in DMU which are respectively equal to 1.225 \AA and 1.227 \AA ²⁶ and the calculated distances in uracil, which are 1.219 \AA ($r_{C=O_2}$) and 1.221 \AA ($r_{C=O_4}$). These small differences do not affect the correlation illustrated in Fig. 4 wherethe $r_{C=O}$ values range from 1.22 to 1.37 \AA .

ACKNOWLEDGMENTS

The authors are indebted to the University of Leuven and to the NFWO of Belgium for financial support.

REFERENCES

1. Taylor R., Kennard D. *J.Mol.Struct.* 1982;78: 1.
2. Saenger W. In : *Principles of Nucleic Acid Structure*, Springer Verlag, New York 1984.
3. Del Bene J.E. *J.Mol.Struct. Theochem* 1985;25: 201.
4. Wuepper J.L., Popov A.I. *J.Am.Chem.Soc.* 1969;91 : 4352
5. Yamada H. *Bull.Chem.Soc.Japan* 1960;33: 780 and 1960;33: 666.
6. Perelygin I.S. *Opt.Spectr.* 1964;16: 40.
7. Wong M.K., Mc Kinney W.J., Popov A.I. *J.Phys.Chem.* 1971;75: 56.
8. Baron M.H., Filliaux F. *Can.J.Chem.* 1985;63: 1473.
9. Balasubramanian D., Goel A., Rao C.N.R. *Chem. Phys.Lett.* 1972;17: 482.
10. Gupta A., Rao C.N.R. *J.Phys.Chem.* 1973;77: 2888.
11. Bernardi F. *J.Chem.Soc. Perkin Trans 2* 1975: 194.
12. Rode B.M., Breuss M., Schuster P. *Chem.Phys.Lett.* 1975;32: 34.
13. Kollman P., Rothenberg S. *J.Am.Chem.Soc.* 1977;99: 1333.
14. Sadley J. *Pol.J.Chem.* 1980;54: 991.
15. Kostetsky P.V., Ivanovo V.I., Ovchinnikov Yu A. *FEBS Lett.* 1973;30: 205.
16. Del Bene J.E. *J.Phys.Chem.* 1984;88: 5927.
17. Regis A., Corset J. *Can.J.Chem.* 1973;51: 3577.
18. Brzezinski B., Zundel G. *J.Chem.Phys.* 1984;81: 1600.
19. Kasende O., Zeegers-Huyskens Th. *J.Phys.Chem.* 1984;88 : 2636.
20. Szczesniak M., Nowak M.J., Szczepaniak K., Chin S., Scott I.; Person W.B. *Spectrochim.Acta* 1985;41A: 223.
21. Woodin R.L., Beauchamp J.L. *Chem.Phys.* 1979;41: 1.

22. Barnes A.J., Stuckey M.A., Le Gall L. Spectrochim. Acta 1984;40A: 419.
23. Harsanyi L., Csaszar P., Csaszar A., Boggs J.E. Int.J.Quant.Chem. 1986;XXIX: 799.
24. Del Bene J.E. J.Phys.Chem. 1983;87: 367.
25. Kasende O., Zeegers-Huyskens Th. Spectr.Lett. 1984; 17: 783.
26. Banerjee A., Dattagupta J.K., Saenger W., Rabezenko A. Acta Cryst. 1977;B33: 90.

Date Received: 02/29/88
Date Accepted: 04/04/88